[ad_1]
Advanced genetic sequencing techniques have undoubtedly provided valuable information on the biology and evolution of SARS-CoV-2. Never have the nearly 30 000 nucleotides of a virus been so closely considered by scientists, public health experts, and politicians alike. But the use and application of genetic surveillance of SARS-CoV-2 has varied, risking an insufficient response to a rapidly changing pandemic.
Knowledge of the virus’s RNA sequence was key in characterising SARS-CoV-2 and early sharing of its genetic data enabled the rapid development of diagnostics. The expeditious production of vaccines also owes much to information gleaned from rapid sequencing.
Sequencing is set to increase. In the UK—heralded as the world leader in sequencing by Secretary of State for Health, Matt Hancock—the COVID-19 Genomics UK Consortium says that it will increase SARS-CoV-2 genome sequencing to 20 000 per week by March, this year. WHO has called on African countries to “build and boost” genomic surveillance and has asked countries to ship at least 20 samples per month to sequencing laboratories, via a SARS-CoV-2 genomic sequencing network. In the USA, Anthony Fauci, President Joe Biden’s chief medical adviser, has promised to scale up genomic surveillance.
However, The Gambia, Equatorial Guinea, and Sierra Leone have a higher rate of sequencing than France, Italy, or the USA, suggesting that wealth is not the only determinant of capacity. Officials at the Africa Centres for Disease Control and Prevention have written that Africa has been able to swiftly adapt to COVID-19 using technical know-how gleaned from other infectious disease outbreaks. Whatever the cause, large disparities in surveillance threaten all countries’ ability to monitor and respond to the situation.
What should an appropriate genomic surveillance system look like? First, it is probably unnecessary to sequence every patient’s viral genome. But a sufficient level to detect and track mutations and their effects to inform public health responses should be a core capacity of health systems; both for COVID-19 and for future emerging and re-emerging infections.
Second, sequencing hundreds of thousands of genomes alone is insufficient. An understanding is also needed of the effects of these changes on the virus’s biology and to contextualise the findings with clinical data. This information then needs to be used to formulate appropriate and effective public health policy.
Third, SARS-CoV-2 does not respect borders. Effective viral genomic surveillance needs to be a global concern. Sequences are being made available on several different databases, websites, and platforms, and an absence of standardised nomenclature for variants is contributing to a lack of clarity.
Global genomic surveillance operating in real time is a key tool in the armamentarium of public health measures. In any outbreak it must be widely adopted, focused on seamless open data sharing, and form a foundation of the health response.

Article Info
Publication History
Published: 06 February 2021
Identification
Copyright
© 2021 Elsevier Ltd. All rights reserved.
ScienceDirect
Linked Articles
[ad_2]
Source link
